
©2016 Elkoserver.org. 1

Elko Tutorial

Draft Version 0.7
1-February-2016

What is Elko?

Elko is a suite of servers for hosting highly scalable, sessionful internet applications,
along with a set of common platform technology upon which these servers are all based.
Although the Elko server suite provides a complete solution for most server applications,
the underlying platform technology can readily be used for the creation of additional
types of servers should they be needed.

Elko is targeted at stateful applications, in contrast to traditional web servers, which are
(nominally) stateless. Most real-world internet applications, and certainly those that
attempt to deliver a real-time interactive experience, entail significant short term
application state that must be maintained somewhere. Web servers attain significant
scalability by virtue of their statelessness, which enables capacity expansion by simple
server replication, but this scale comes at the expense of considerable added complexity
and inefficiency once the need to maintain application state is taken into account.
Moreover, much of this complexity is inflicted on application developers in ways that
slow development and impede software maintainability. Elko servers, in contrast,
maintain application state directly in an immediate and developer friendly way, and
achieve massive scalability by other means.

The suite also includes a set of service frameworks and object classes that build on top of
the basic server infrastructure to provide a platform for delivering real-time, geo-enabled
multiplayer games to clients on mobile devices, as well as to clients in traditional web,
PC, and console environments.

The Elko Server Suite

The Elko server suite consists of a family of different types of servers that cooperatively
form a highly scalable application hosting system for real-time, stateful applications. The
current server suite consists of seven different kinds of servers:

Context server — where applications run
Director — directs users to contexts and load balances the pool of context servers
Presence server — tracks user presence and manages social graphs
Gatekeeper — adds support for external user authentication and login handling
Repository server — provides persistent object storage services
Workshop — provides a place for arbitrary cross-server services to run
Broker — central admin and configuration management for all the other servers

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 2

The simplest possible configuration consists of a single context server. More context
servers may be added for scale, at which point one or more directors are required. A
single director can manage a very large number of context servers, but it is common to
have at least two directors to provide redundancy for reliability and fault tolerance. The
context servers and directors themselves can do basic user authentication, but more
sophisticated authentication and user account schemes may require the addition of one
more gatekeepers, which can integrate with external account management, identity, and
authentication systems. In the same vein, presence servers enable integration with social
graph data, both external (such as a user’s Facebook friends) and internal (for example, a
competitive game might choose to keep track of players’ rivalries). Some services (such
as transactional bank account management for virtual currencies) are a global to an entire
game or application, but still make use of real-time state; workshops provide a place for
these kinds of services to be hosted. If configured individually, all of these disparate
servers would add up to a fair bit of administrative complexity. The broker provides a
means of simplifying that, by providing a one-stop centralized administrative control
point for managing a large cluster of servers. The broker enables other servers to be
added and removed dynamically, and isolates the individual servers from concern with
overall configuration details or with order-of-startup issues. It also provides a centralized
facility for server monitoring and metrics collection.

 The Context Server and The Elko Application Environment

The context server is the heart of the Elko server suite. It is the place where application-
specific classes are loaded and run to realize the particular objects and behavior that
distinguish one application from another. The remaining types of servers play important
supporting roles in making the whole system work effectively, but, except for a few
unusual situations, from an application developer’s perspective they can mostly be
ignored.

Elko applications are object-oriented, in a couple of different ways. The Elko object
model is based on the unum abstraction. The unum model distinguishes between two
senses of the concept of “object”: objects in the object-oriented programming sense,
consisting of bundles of software state and behavior that each exist in some computer’s
memory, and objects in the world model sense, consisting of discrete entities within some
abstract space independent of any particular computational embodiment. We call the first
kind of thing an “OOP object” or just an object. We call the second kind of thing an
unum (Latin for “one thing”). We make this distinction because a distributed application,
such as a virtual world or an online game, contains things such as player avatars, chat
rooms, documents, trees, tools, weapons, buildings, animals — the list is endless, really
— that have their own distinct identities in the scope of the application or game but
independent of any particular computer. An unum may have concurrent manifestations,
which we call presences, on each of the various distributed machines that make up the
application’s implementation (and these presences in turn themselves are typically
implemented by OOP objects, or clusters of related OOP objects, underscoring the
usefulness of the unum/OOP object distinction). For example, if you and I are interacting

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 3

with each other in a virtual world game, my avatar may exist in one form on my iPhone,
in a slightly different form on your Android phone, and in a wildly different form on the
server via which we jointly play the game. Nevertheless, my avatar is a single,
designatable entity within the game world that has a unitary existence, even though its
state and implementation is spread across all these platforms.

In its typical manifestation (such as in the Elko framework described here), an unum is
realized by a server presence and some number of client presences. It is common for all
the client presences to share the same underlying implementation, though there may be
differences to accommodate disparate platforms (e.g. iPhone vs. Android, Mac vs.
Windows). However, it is quite common also for the server and client presences to be
extremely different from each other, often to the point of being coded in entirely different
programming languages, as the roles of the client and the server are very different and
thus so are the tools they require to get their respective jobs done. In particular, the
server presence of an unum typically needs to communicate with numerous client
presences, but each client presence needs only to communicate with the single server
presence. The key abstraction for thinking about distributed computation this way is
division of labor. (The division of labor idea also invites consideration of distributed
architectures other than the strict client-server model, but that is far outside the scope of
this document.)

Presences of an unum communicate by sending messages to each other. Note that this
means that a particular message is addressed along two dimensions: one dimension is the
identity of the unum that is the target of the message, and the other is the particular
presence or presences of that unum to which the message should be delivered. This two-
dimensional address notion is largely invisible to the client implementation, since the
client really only knows about one other presence: the server. But the distinction
becomes important when implementing a server presence, as there may be multiple client
presences that it needs to interact with.

In Elko, all inter-presence messages are unidirectional and asynchronous. That is,
sending a message is an immediate, non-blocking operation with no return value. This is
in contrast to the many distributed programming frameworks based on variations of the
remote procedure call (RPC) abstraction, such as Java RMI, Pyro, CORBA, XML-RPC,
or, for that matter, HTTP, where a message is typically a request that blocks waiting for a
reply. One of the fundamental rules of programming in the Elko server environment is
that no operations are permitted that could block.

The Elko context server provides three fundamental classes of unums, from which all
applications are built. These are the context, the user, and the item.

A context is a rendezvous and coordination point for communications among multiple
parties. A context provides a scope for object addressing and message routing — a
common frame of reference for interaction. Contexts are the basis of resource allocation
on the server, hence the term “context server". The context abstraction is concerned with
the things that are visible in common to a set of users. What a context represents in a

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 4

particular application depends, of course, on the application, but examples might include
a chat room in a multi-user chat application, an auction in a real-time auction application,
a poker table in a real-time gambling game, or a small neighborhood in a virtual world
game.

A user represents an autonomous agent acting within a context. By “autonomous”, we
mean that its actions are controlled from outside the server. Usually this corresponds to a
human being interacting with a client application. At any given time, a user is in some
particular context. Multiple users may be in the same context together, enabling them to
engage in multiparty interactions of various kinds. Associated with a user is a
communications connection between the user’s client and the context server. This
connection carries the message traffic between the associated client’s client unum
presences and the server’s server unum presences. Continuing the examples from the
previous paragraph, users would represent the people chatting in the chat room, the
bidders in the auction, the card players at the poker table, or the avatars walking around
on the street in the neighborhood.

An item represents any other kind of object that embodies some aspect of the application.
Depending on the application, there might be a lot of items, a few items, or no items at
all. For example, the chat room mentioned above might not have any use for them.
Items can represent very abstract things, such as conditional bids in an auction. Items can
represent concrete things, such as playing cards or poker chips. An application can have
very few kinds of items, or a very large number. For example, one might imagine the
virtual world game being populated with an enormous variety of different possible
objects, each of which would be a different kind of item.

Contexts, users, and items all exist in a containership hierarchy. A context can contain
users and items, users can contain items, and items can (potentially) contain other items.
The containership hierarchy is central to the mechanisms the context server uses for
object persistence, and it also plays an important role in controlling the kinds of access
that different users have to different objects.

Each unum has a unique identifier within the application, called a ref (short for
“reference"), by which it may be named in messages. When a client sends a message
over a connection to a server and the server receives it, the message is delivered to the
server presence of the object named by the message as its target. Similarly, a server may
send a message over a connection to a client, addressing the message to the client
presence of some object. The server may direct a single message to some or all of the
client presences of an unum; the server’s message system will automatically take care of
the message fan-out, using the various clients’ respective connections.

As provided by the Elko framework out of the box, each of these three kinds of unums
supports a basic message protocol that is concerned with its nature as one of these core
abstractions. The classes that implement them on the server provide a rich but basic set
of APIs concerned with things like message delivery, control over persistence,
manipulation of the containership hierarchy, and so on, along with facilities for creating

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 5

new objects and destroying existing ones. However, this basic framework contains no
application-specific functionality. Providing that is the responsibility of the application
developer.

Instances of the core unum types acquire their application-specific personalities via
application-specific objects known as mods (short, variously, for “modules" or
“modifications", depending on your perspective). A mod is simply a bundle of behavior
and state that is attached to some particular context, user, or item. The mod augments the
unum to which it is attached with additional message protocols specific to whatever
functionality it is that the mod provides. Some or all of a mod’s state may be persisted
along with that of its associated unum. The Elko context server uses this sort of mix-in
pattern, in contrast to subclassing, because our experience has shown that game and
virtual world applications often require bundles of object functionality that are orthogonal
to the otherwise natural class hierarchy that the objects might be organized into. (In
addition, separating developer-provided state from framework-provided state by
associating them via composition rather than via embedding makes it much easier for the
object persistence mechanism to operate reliably in the face of application bugs.)

At any given time, a context is said to be either active or inactive. When it is inactive, it
sits in a quiescent state in the persistent object store, which we call the repository.
Typically, an inactive context is activated when a user attempts to enter it (by definition,
in its inactive state a context contains no users), though other events on the server can, in
principle, also activate a context if the application’s design demands it. Upon activation,
the context is loaded from the repository into the context server’s memory, along with
any items that the context contains (and any items they contain, and so on). Once active,
messages sent to the context server addressed to the context or any of the users or items it
contains will be delivered to their targets. The methods that handle these messages can
do whatever they do according to the logic of their particular application, including
modifying the states of the various objects, sending messages of their own to clients or to
other objects on the server, and so on. When the last user leaves the context and any
running processes that were accessing it have finished, the context is deactivated: any
changes to the state of the context and it contents are written back out to the repository
and the in-memory objects are released. In addition, the state of an active context or any
or all of its contents may also be checkpointed to the repository at any time by deliberate
action on the part of application code when it is important for critical state to be saved.

A similar story describes the activation cycle of a user unum. The only important
difference is that the user state (and that of any items the user contains) is loaded from the
repository when the user connects to the server and written back out again when the user
leaves. Since in normal operation a user’s connection and disconnection is coupled
directly with their entry to and exit from a context, a context’s activation cycle and a
user’s activation cycle are closely associated. The key difference is that additional users
may enter a context (and themselves be activated) after the context is already active, and
the context may remain active after a user exits.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 6

Another way to think of this is as an object-oriented analog to a traditional paged virtual
memory system, especially as it would be experienced in non-file-oriented operating
system such as Multics or KeyKOS: unum state is like a virtual memory page, the
contents graph of a context or user unum is like a page frame, unum activation is like a
page fault, and so on.

Contexts and items may also be created dynamically by the actions of application code in
the server. Such objects may add to the persistent state of the application, or they may be
entirely ephemeral, existing only so long as users are interacting with them and simply
vanishing afterwards rather than being saved into the repository.

Developing an Elko application consists of defining the role or roles that contexts will
play, defining the various kinds of items that will populate these contexts and what these
items will do, and defining what affordances users will have for manipulating these items
and each other. Central to this is specifying the message protocols that the various
objects will participate in.

We have found that often the most effective approach for thinking about how an Elko
application will work is to begin by considering the division of labor between client and
server, manifested by the client-server protocols of the various unums involved. From
these protocols, you can then work outward to the state and behavior that is needed on
each side. On the server side, you develop mods for the contexts, users and items that
give these objects their application-specific personalities. On the client side, you
implement the appropriate user interfaces, graphical visualizations, and so forth to deliver
the application or game experience to the human being who is actually interacting with
the client device.

Nuts and Bolts

JSON Messaging

Communications between clients and the context server, as well as among the various
different servers on the backend, is via JSON messaging.

JSON messaging is a set of conventions for encoding object-to-object messages in JSON.
A JSON message is simply a JSON object of the form:

{ to:targetRef, op:verb, params... }

The property to designates the message target, i.e., the object to which the message is
addressed. Its value is a ref, a string that uniquely names the target object in the scope of
the messaging system on the arriving end of the communication.

The property op is the message verb, i.e., the operation code or method selector, a string
that indicates to the message target which operation is to be performed upon receipt of
the message.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 7

Any number of other properties may also be included, and serve as named parameters.
Their number, names, and meanings vary depending on the specific message being sent.
They may be of any data type supported by JSON, as long as there is consistent mutual
understanding between the sender and receiver of the proper content for the message.
The order of the parameters is not significant, though in documentation we
conventionally write the to and op parameters first for clarity of presentation. (Note
that to improve documentation legibility, we also use a slightly augmented JSON syntax,
where we skip the quotation marks around the property names. This notation is also
understood by the server, as it considerably mitigates the drudgery of manual
composition of JSON expressions during debugging. The server does, however, conform
to the strict RFC 4627 JSON standard in the things it outputs unless explicitly configured
not to.)

For example, the message:

{ to:"u-47-3699102", op:"say", utterance:"Hi Fred!" }

might be a chat message directed to another user.

JSON messages may be transmitted over any reasonable communications medium. The
current implementation supports raw TCP, HTTP, WebSockets, and ØMQ, as well as the
SSL variants of these (HTTPS, etc). We also support a protocol of our own that we’ve
named Resumable TCP (RTCP), which adds a simple session layer for JSON messaging
on top of TCP to support reliable communications over unreliable wireless networks,
specifically for mobile devices.

A message connection is always a bidirectional, multiplexed, machine-to-machine (or
process-to-process) message pipe. Two communicating machines, whether they are a
client and a server or a server and another server, typically maintain a single connection
between them, over which all message traffic on behalf of objects on either side is
carried. A given connection is kept alive for the duration of the interaction between the
two machines, until one side or the other decides to terminate it. This communications
session is stateful, in that either party is permitted, indeed expected, to maintain
continuity of state between successive messages. This is directly in contrast to stateless,
sessionless protocols such as HTTP.

Though a connection is bidirectional, messaging over the connection is unidirectional and
asynchronous. That is, as soon as a running application passes a message to the
messaging system, it is able to continue on its own without waiting for reply or
confirmation. When a message is part of a request-reply protocol, the reply must be
treated as an explicit, separate return message by the two parties. Any such protocol is
part of the design of the particular application in question and is not the business of the
messaging system itself. Any given message may result in a reply from its recipient, no
reply, or possibly even many replies, depending on the design of the application and its
protocols.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 8

Messages on a connection are ordered, in the sense that a sequence of messages
transmitted over a given connection from machine A to machine B will be processed at
machine B in the same order they were transmitted by machine A. However, this ordering
is strictly on a per-connection basis. If there is more than one connection between two
machines (not normal but not forbidden either), there are no guarantees about the relative
order of messages sent over different connections.

Since HTTP is stateless and sessionless, an additional transport protocol is used when the
message transport medium is HTTP. This protocol uses special URLs and additional
JSON encoding within the HTTP request and reply bodies to efficiently synthesize a
sessionful, symmetric, bidirectional, asynchronous message channel out of an ongoing
series of transient, asymmetric, synchronous, RPC-style HTTP requests. The details of
this transport protocol are documented elsewhere.

Object State Representation

For purposes of transmission in messages and writing to persistent storage, the state of an
object is serialized into JSON following a few simple representational conventions. The
conventional form of an object is:

{ type:typeTag, ref:refString, properties... }

The property type encodes the data type of the object. This is a simple tag string that is
mapped to the actual object class internally. On the server, a mapping table, itself stored
as a persistent object in the server’s object repository, maps the type tag to the fully
qualified Java class name of the class whose constructor will decode the JSON serialized
representation into a live Java object in the server’s memory. (We use a tag string rather
than using the class name directly in order to decouple the JSON form from server-
specific implementation details. It also reduces the size of the representation, cutting
bandwidth and storage requirements.) Depending on circumstances, the type property
is not always required, since the types of pure data objects embedded within other objects
can frequently be determined by the context in which they are used. For example, say you
had a polygon object, one of whose properties is an array of points, e.g.:

{ type:"poly", points:[point, point, ...], whatever... }

you might simply represent an individual point as:

{ x:xVal, y:yVal }

rather than, say:

{ type:"point", x:xVal, y:yVal }

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 9

since at the place in the code where it needs to deserialize the array of points, the code
already knows that it’s looking for an array of points, and redundantly tagging each of
them would just be wasteful.

The property ref is the object’s ref, the unique identifier that designates that specific
object instance. The ref property is only present when the object in question is
referenceable, i.e., if it can be pointed to by something else, most notably as the
designated target of a message send. Pure data objects that are simply structured property
values inside other objects are typically not referenceable in this way, and so their JSON
representations would omit this property.

The remaining properties depend entirely on the object type. It is the responsibility of the
code that serializes and deserializes a given type to interpret or generate these properties
as appropriate.

Note that this JSON representation is a serialization scheme used for communicating an
object’s state from one place to another. What it becomes when interpreted by the
receiving entity is entirely undefined here. We loosely talk about storing a serialized
object in the repository, but how the repository actually represents things internally is its
own business. It is not required, or even really expected, that the repository will be
storing and retrieving actual literal JSON strings.

A Quick Tour of The Server Side of An Application

Let’s illustrate the basic structure of an Elko context server application by working
through a simple example: a minimal multi-user chat system. A chat server is Elko’s
version of the classic “hello world” application.

For this application, we’ll implement a chat room as a context, with a simple context mod
that realizes the chat functionality. Beyond the basic context functionality, all that is
needed to have a working chat system is a message that allows a user to issue a chat
utterance that is then echoed to all the other users in the room:

{ to:contextRef, op:"say", speech:textToBeSpoken }

which the mod then sends to everybody in the room as:

{ to:contextRef, op:"say", speech:textToBeSpoken,
 from:speakerRef }

Here is the complete server-side implementation of this application:

package com.example.tutorial;

import org.elkoserver.foundation.json.JSONMethod;
import org.elkoserver.foundation.json.MessageHandlerException;

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 10

import org.elkoserver.json.EncodeControl;
import org.elkoserver.json.JSONLiteral;
import org.elkoserver.json.Referenceable;
import org.elkoserver.server.context.ContextMod;
import org.elkoserver.server.context.Mod;
import org.elkoserver.server.context.User;

/**
 * A simple context mod to enable users in a context to chat with
 * each other.
 */
public class SimpleChat extends Mod implements ContextMod {
 @JSONMethod
 public SimpleChat() {
 }

 public JSONLiteral encode(EncodeControl control) {
 JSONLiteral result = new JSONLiteral("chat", control);
 result.finish();
 return result;
 }

 @JSONMethod({ "speech" })
 public void say(User from, String speech)
 throws MessageHandlerException
 {
 ensureSameContext(from);
 context().send(msgSay(context(), from, speech));
 }

 static JSONLiteral msgSay(Referenceable target,
 Referenceable from,
 String speech)
 {
 JSONLiteral msg = new JSONLiteral(target, "say");
 msg.addParameter("from", from);
 msg.addParameter("speech", speech);
 msg.finish();
 return msg;
 }
}

The declaration of the class:

public class SimpleChat extends Mod implements ContextMod {

subclasses Mod, which is the abstract base class for all mods. Among other things, this
base class provides a bunch of support methods for common operations that mods tend to

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 11

want to do. The interface ContextMod is a marker interface that identifies this as a
context mod, i.e., a mod that is intended to be attached to contexts. The server will
require any mods that you attempt to attach to a context to implement this interface.
There are analogous UserMod and ItemMod interfaces for users and items. Note that
these are not mutually exclusive: something can be, say, both a user mod and item mod at
the same time. Indeed there is a GeneralMod interface that declares the mod to be
attachable to any kind of unum.

The constructor:

@JSONMethod
public SimpleChat() {
}

is invoked by the server’s object deserialization mechanism when the JSON object
descriptor for the mod is read from the repository as part of the descriptor for the context
to which it is attached (more on this below). The @JSONMethod annotation marks it as
being intended to be used in this way. This particular constructor is trivial because this
mod has no state or parameterizable configuration; we’ll present a slightly more
complicated example below showing how to incorporate parameters and state.

The encode() method is another part of the serialization interface:

public JSONLiteral encode(EncodeControl control) {
 JSONLiteral result = new JSONLiteral("chat", control);
 result.finish();
 return result;
}

The signature for this method is defined by the Encodable interface, which the base
class Mod is declared to implement but does not actually provide. Every mod class needs
to provide an appropriate encode() method, whose job is to produce a suitable JSON
serialization for instances of its class. Since the SimpleChat mod has no state, in this
case serialization is very simple — all that is needed is the type tag property.

The JSONLiteral class is essentially a structured wrapper for a Java string buffer, in
which a JSON literal string is incrementally constructed. Here, the JSONLiteral
constructor call generates the preamble for a JSON object descriptor, and then the
descriptor is immediately closed off by the call to the finish() method since nothing
else is needed beyond the type tag. The resulting JSON string will output as:

{ "type":"chat" }

though you don’t need to actually be aware of this.

Note the one parameter to the encode() method: an instance of EncodeControl.
This indicates how the object is to be serialized. The most important serialization

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 12

consideration is usually whether the object is being sent to the client or to persistent
storage. It is often the case that the server’s persistent representation for an object
includes information that is not to be shared with clients. Less commonly, there may be
ephemeral state that is sent to clients but not actually stored. The control parameter
lets the encode() method distinguish between these cases. In this example, there’s no
such distinction to be made and so the parameter is ignored. However, since the mod has
no state, all that the mod descriptor conveys to the client is that the context supports chat.
If the client were being written as a pure chat application, we might simply assume that
any context it would be interacting with supports chat, and so we might prefer to save the
bandwidth spent on telling the client something it already knows implicitly. In this case,
we might rewrite the encode() method as:

public JSONLiteral encode(Encode control) {
 if (control.toClient()) {
 return null;
 } else {
 JSONLiteral result = new JSONLiteral("chat", control);
 result.finish();
 return result;
 }
}

Returning null from an encode() method says “there’s nothing here to encode,
ignore me”. In this case the SimpleChat mod descriptor would be part of the
persistent representation of the context, but the context descriptor that is sent to the client
would not include it.

The say() method is where all the actual work of the mod gets done:

@JSONMethod({ "speech" })
public void say(User from, String speech)
 throws MessageHandlerException
{
 ensureSameContext(from);
 context().send(msgSay(context(), from, speech));
}

There are several things going on here that warrant explanation.

This is a message handler method, intended to be invoked by the context server upon
receipt of a message from the client. In this case, it defines a handler for the "say"
message, taking a single string parameter named speech. This matches the message
protocol whose description we gave on page 9 at the beginning of this example.

The first parameter of any message handler method is always the user from whom the
message was received. The remaining parameters, if any, are mapped from the position-
independent named parameters found in the JSON message to the positional-but-

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 13

anonymous parameters of the Java method. The @JSONMethod annotation lists the
names of the message parameters in order. This annotation is needed because although
we humans can see the parameter names in the source code, the Java virtual machine (and
the reflection API that goes with it) does not make parameter names available to
executing code, hence this additional hint is required so that the message dispatch
machinery can do its work.

Any message handler can fail with a MessageHandlerException, so all message
handlers need to be declared to throw it.

The first line of the method:

ensureSameContext(from);

is a guard to ensure that the message didn’t come from somebody outside the context.
This prevents unauthorized users from injecting message traffic into the chat (other
applications might have a use for messages originating from outside the context, so this
guard is optional). The ensureSameContext() function is one of a number of guard
functions provided by the Mod base class. It will throw a
MessageHandlerException if the user given as its parameter is not present in the
same context as the object to which the mod is attached.

The context() function is also provided by the Mod base class. It returns the
Context object for the context in which the message is being handled. Passing a
message to a Context’s send() method will send that message to all the users in the
context. The msgSay() method here produces such a message:

static JSONLiteral msgSay(Referenceable target,
 Referenceable from,
 String speech)
{
 JSONLiteral msg = new JSONLiteral(target, "say");
 msg.addParameter("from", from);
 msg.addParameter("speech", speech);
 msg.finish();
 return msg;
}

It’s worth mentioning that, in this example, a separate msgSay() method is not strictly
needed, as the message is only sent from one place in the code and so could be generated
inline. However, as a general rule it’s a better practice, from the perspective of code
clarity and modularity, to separate message generation operations into methods of their
own even if the message in question is only sent from one place. And surprisingly often
you end up later wanting to send the same message from elsewhere in the code, so it can
pay off that way too.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 14

Compare the msgSay() message generator method to the mod’s encode() method.
Both start out by initiating the construction of a JSONLiteral object. However,
whereas the JSONLiteral constructor parameters in encode() were a string and an
EncodeControl object, denoting, respectively the type tag and what audience the
serialized representation is intended for, here the parameters are a Referenceable
object and a string, denoting, respectively, the to and op parameters.
Referenceable is an interface provided by the Elko runtime and implemented by all
objects to which messages can be sent. These are exactly the objects that have refs, and it
is that ref which gets serialized as the value of the to parameter.

Unlike the exemplar encode() method, the JSONLiteral produced by msgSay()
has a couple of additional JSON properties. These are the parameters of the JSON
message being generated, which are appended to the message with calls to the
addParameter() method.

When the say() method calls msgSay(), it passes the context itself as the message
target, the sender of the incoming "say" message as the from parameter, and the
speech text extracted from the incoming message as the speech parameter.

Let’s say the chat room is the context with the ref "ctx-chatroom1" and there are
two users, Alice and Bob, designated "u-alice" and "u-bob" respectively. Alice’s
client might send to the server the message:

{ to:"ctx-chatroom1", op:"say", speech:"Hi everybody!" }

The context has the SimpleChat mod attached to it, so it handles the "say" message
using the say() method shown above. This ends up generating the outbound message:

{ to:"ctx-chatroom1", op:"say", from:"u-alice",
 speech:"Hi everybody!" }

which the server sends out to the clients of everybody in the context, namely Alice and
Bob.

Note that the outbound message is addressed to the context, same as the inbound message
was. This is something that people new to the Elko architecture often find surprising at
first, expecting it to be addressed to the user whose client it is being sent to. However,
we consider the chat activity to be taking place in the context and have associated the
message broadcast operation with the context itself rather than any particular user. Each
client has its own internal model of what is going on in the context, and sees this message
as an action in that context also — conceivably a client could be participating in multiple
chats in different chat rooms on the same server, for example, and the message address
disambiguates where a particular utterance was made.

One obvious question you may be asking at this point is: where did the context come
from in the first place?

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 15

The context is described by a JSON object descriptor in the repository. In the case of our
example, it would be something like this:

{
 type:"context",
 ref:"ctx-chatroom1",
 name:"Example Chat Room",
 capacity:20,
 mods: [
 { type:"chat" }
]
}

This defines a context referred to as "ctx-chatroom1", with our simple chat mod
attached. In addition to the collection of mods, the Context class also supports a
number of built-in application-independent properties that can be possessed by any
context. In this case we’ve given it a human readable label and a limit to the number
users allowed in at once.

The context server understands certain messages directly. There is a built-in pseudo-
object named "session" that understands messages that manage a client’s connection
session. In particular, the "entercontext" message is used to enter a context.

Let’s say we have a context defined as above, and further that user Bob is already there.
Here’s what the message dialog between Alice’s client and the server might look like.
We’ll indicate messages from Alice’s client to the server with “A→” and messages from
the server to Alice’s client with “A←” (and we’ll similarly denote messages between the
server and Bob’s client with “B→” and “B←”, and messages from the server to both of
them with “AB←”).

Alice first tells the server that she wants to enter the chat room context:

A→ { to:"session", op:"entercontext", context:"ctx-chatroom1",
 user:"u-alice"}

Note that the "entercontext" message is sent to "session" rather than to the
context itself. This is for a couple of reasons. One is that the context might not actually
be active on the server when she does this, and so there would be no context object there
to receive the message in that case, but the "session" pseudo-object is always there,
by definition. Also, it is possible that the server might choose to put her in a different
context, especially if the context is very busy and the context cloning feature is enabled.

Also, this example doesn’t involve of any kind of user authentication. The client claims
to be whoever it chooses, and the server just accepts this. A real application would most
likely want to require some kind of authentication before letting somebody in. The

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 16

Session and Context classes provide support for this, but that’s outside the scope of
this example.

In our example here, the server is happy to let Alice in, and so it puts her into the context
that was requested. The first part of this is to inform her client about the current state of
the context, by sending a series of "make" messages, directing the client to create its
own local presences of the various objects that make up the chat room and its contents.
The convention is that a "make" message is sent to the container into which the object it
describes should be placed. The "make" message for the context itself is addressed to
the session:

A← { to:"session", op:"make",
 obj:{ type:"context", ref:"ctx-chatroom1",
 name:"Example Chat Room", mods:[{ type:"chat" }] }}

And then another "make" message creates a presence of Bob inside the context:

A← { to:"ctx-chatroom1", op:"make",
 obj:{ type:"user", ref:"u-bob-1841693218357636549",
 name:"Bob" }}

The server announces that object creation for the context is complete by sending the
context object a "ready" message:

A← { to:"ctx-chatroom1", op:"ready" }

Finally, the server places Alice into the context and sends a "make" message to
establish the client presence representing Alice herself (a similar "make" message will
also be sent to Bob’s client, telling him about Alice’s arrival, though Alice doesn’t see
that):

A← { to:"ctx-chatroom1", op:"make",
 obj:{ type:"user", ref:"u-alice-5682117796337941936",
 name:"Alice" }, you:true }

Compare the "make" messages for Alice and Bob: the one for Alice contains an
additional parameter, you, that indicates to Alice’s client that this is the object that
represents her rather than anybody else. At the same time, the server will send a separate
message on its connection to Bob’s client:

B← { to:"ctx-chatroom1", op:"make",
 obj:{ type:"user", ref:"u-alice-5682117796337941936",
 name:"Alice" }}

This tells Bob that Alice has arrived.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 17

Note also that even though Alice’s ref is “u-alice” and Bob’s is “u-bob”, what
shows up here is somewhat different: “u-alice-5682117796337941936" and “u-
bob-1841693218357636549”. These longer refs designate Alice’s and Bob’s
existence in this particular instance. The longer ref serves two purposes: first, if Alice is
in more than one context at the same time (some applications allow this), this
disambiguates which version of Alice a given message refers to. Second, it prevents
other clients who are not in the context from being able to guess how to address messages
to her there without the collusion of Alice or somebody else who is already there.

Alice is now in the context, so she says something to those present, using the "say"
message that we defined above.

A→ { to:"ctx-chatroom1", op:"say", speech:"Hi everybody!" }

This is echoed to everybody here, including to Alice herself:

AB← { to:"ctx-chatroom1", op:"say",
 from:"u-alice-5682117796337941936",
 speech:"Hi everybody!" }

Even though Alice knows what she said, echoing the message back to her in this way
allows her client to see the sequencing of her "say" message in the stream of other
actions going on around the same time.

Now Bob replies. Alice doesn’t see his message to the server, of course, but she sees the
broadcast it generates:

AB← { to:"ctx-chatroom1", op:"say",
 from:"u-bob-1841693218357636549",
 speech:"Howdy, Alice!" }

Now Bob has to take his leave, so he says good-bye:

AB← { to:"ctx-chatroom1", op:"say",
 from:"u-bob-1841693218357636549",
 speech:"Sorry, gotta run. My toast is burning!" }

Once Bob leaves the context, the server announces to Alice’s client that he is gone by
instructing it to delete his presence:

A← { to:"u-bob-1841693218357636549", op:"delete" }

Just as the convention for telling a client to create an object is to address a make message
to the new object’s container, the convention for telling a client to remove an object is to
address a delete message to the object itself.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 18

Notice that although the message is transmitted to Alice’s client, it is addressed to the
client’s representation of Bob. This illustrates the point made above that messages are
addressed along two dimensions: the client connection along which the message will be
sent (in this case, the connection to Alice’s client), and the object to which the message
should be delivered (in this case, Alice’s client presence of Bob).

Finally, Alice herself leaves the context, by sending an "exit" message:

A→ { to:"ctx-chatroom1", op:"exit" }

The "exit" message is optional, in that she could simply drop her connection, but
doing it this way leaves her in contact with the server, possibly to enter a different
context if she so chose.

Adding persistent state

Let’s expand our example a bit, by adding another message to the chat protocol. We’ll
add a "push" request, where one client can ask everyone in the room to direct their web
browser to a particular web page (this might be used in interactive presentations, for
example). Let’s make the message a bit more complicated than “say” by allowing the
sender the option to name a browser frame, with the idea that this is going to be used by
some kind of fancy multi-paned browser client:

{ to:contextRef, op:"push", url:urlString, frame:optFrame }

which the chat mod then echoes like it did the "say" message, by attaching the sender’s
identity:

{ to:contextRef, op:"push", url:urlString, frame:optFrame,
 from:pusherRef }

Here we’ve labeled the value of the frame property optFrame, to connote that it is
optional. What we mean is that if the sender did not care to specify a frame, it would
omit this property from the message altogether.

Pushing somebody’s browser to a different URL is a pretty aggressive thing to do, so we
might not want to allow this in every chat room — perhaps the chat rooms intended for
casual conversation wouldn’t permit this feature, but the ones intended for sales
presentations would. So we’ll add a property to the mod to enable us to configure this.
This means adding some state to our chat mod class, and giving it a different constructor:

/** Whether users are permitted to push URLs to other users. */
private boolean amAllowingPush;

@JSONMethod({ "allowpush" })
public SimpleChat(OptBoolean allowPush) {
 amAllowingPush = allowPush.value(false);

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 19

}

Here we have chosen to make the push permission property optional, defaulting to
disallowing push if nothing is specified (this means that the behavior of our existing
context "ctx-chatroom1" will not be changed by adding this new feature). The class
OptBoolean is provided by the Elko API to denote an optional boolean parameter (the
framework also provides obvious similar things like OptInteger, OptString, and
so on). The OptBoolean class has a value() method that lets you obtain the value
of the parameter, while specifying a default to use if the parameter was actually omitted
in the message itself. The server’s message dispatch system understands about these
kinds of optional parameters and invokes the message handler with an instance of
OptBoolean that encodes whether the value was true or false or absent from the
message altogether.

Our extended chat mod also requires an enhanced version of the encode() method:

public JSONLiteral encode(EncodeControl control) {
 JSONLiteral result = new JSONLiteral("chat", control);
 if (!control.toClient()) {
 result.addParameter("allowpush", amAllowingPush);
 }
 result.finish();
 return result;
}

(We consider that the permissions setting is strictly the server’s internal business, so we
don’t pass that information to the client.)

The implementation of the "push" message handler is pretty similar to that of the "say"
handler, except that we check the permission setting:

@JSONMethod({ "url", "frame" })
public void push(User from, String url, OptString frame)
 throws MessageHandlerException
{
 if (amAllowingPush) {
 ensureSameContext(from);
 context().send(msgPush(context(), from, url,
 frame.value(null)));
 } else {
 throw new MessageHandlerException("push not allowed here");
 }
}

Note the way the optional frame parameter is handled.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 20

The method that generates the outgoing “push” message should be relatively obvious as
well:

static JSONLiteral msgPush(Referenceable target,
 Referenceable from,
 String url, String frame)
{
 JSONLiteral msg = new JSONLiteral(target, "push");
 msg.addParameter("from", from);
 msg.addParameter("url", url);
 msg.addParameterOpt("frame", frame);
 msg.finish();
 return msg;
}

This looks pretty similar to the msgSay() method. The one new wrinkle here is the use
of JSONLiteral’s addParameterOpt() method. This only bothers to actually add
the parameter to the message if it has a value other than null.

We might want to add another context to our server’s configuration:

{
 type:"context",
 ref:"ctx-presentationroom1",
 name:"Example Presentation Room",
 capacity:20,
 mods: [
 { type:"chat", allowpush:true }
]
}

Interaction with this context would look pretty similar to the example given earlier,
except that Alice can now send things like:

A→ { to:"ctx-presentationroom1", op:"push",
 url:"http://suddenlysocial.net/awesome.html" }

Getting Even Fancier

Now let’s suppose we wanted to add the ability for users to carry on side conversations:
to send messages from one user to another that wouldn’t be shared with everybody in the
context. You’d think the obvious way for this to work would be for Alice’s client to be
able to send something like:

A→ { to:" u-bob-1841693218357636549", op:"say",
 speech:"Can you believe this guy?" }

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 21

i.e., the same “say” message we’ve been using, except addressed to a specific user
instead of to the context. And if you thought that, you’d be right! But of course as we
have things now, this won’t work. The message would be delivered to the server
presence of Bob, not to the context. It’s the context that has our SimpleChat mod
attached, not the User object representing Bob. Bob’s user object doesn’t yet have any
way to know what to do with this message (depending on how the server is configured, it
would either reply with a “message not understood” message to Alice’s session, or
silently discard the message unprocessed). What you’d like is something similar to the
SimpleChat mod, but for users instead of contexts. The following should do the trick:

package com.example.tutorial;

import org.elkoserver.foundation.json.JSONMethod;
import org.elkoserver.foundation.json.MessageHandlerException;
import org.elkoserver.json.EncodeControl;
import org.elkoserver.json.JSONLiteral;
import org.elkoserver.server.context.Mod;
import org.elkoserver.server.context.User;
import org.elkoserver.server.context.UserMod;

/**
 * User mod to let users in a context talk privately
 * to each other.
 */
public class PrivateChat extends Mod implements UserMod {

 @JSONMethod
 public PrivateChat() {
 }

 public JSONLiteral encode(EncodeControl control) {
 if (control.toRepository()) {
 JSONLiteral result =
 new JSONLiteral("privchat", control);
 result.finish();
 return result;
 } else {
 return null;
 }
 }

 @JSONMethod({ "speech" })
 public void say(User from, String speech)
 throws MessageHandlerException
 {
 ensureSameContext(from);
 User who = (User) object();
 JSONLiteral response =

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 22

 SimpleChat.msgSay(who, from, speech);
 who.send(response);
 if (from != who) {
 from.send(response);
 }
 }
}

A few things to note here:

The declaration of the class:

public class PrivateChat extends Mod implements UserMod {

looks a lot like the declaration for SimpleChat, except that it declares itself to be a
UserMod rather than a ContextMod — a mod that is attached to users rather than to
contexts.

The constructor and the encode method both look essentially the same as those for
SimpleChat before we added the push feature (which we’ve left out of this class in the
interest of brevity).

The big difference is in the "say" message handler:

@JSONMethod({ "speech" })
public void say(User from, String speech)
 throws MessageHandlerException
{
 ensureSameContext(from);
 User who = (User) object();
 JSONLiteral response =
 SimpleChat.msgSay(who, from, speech);
 who.send(response);
 if (from != who) {
 from.send(response);
 }
}

The method signature looks just like the corresponding handler in the SimpleChat
mod, which is not surprising since the message protocol is the same. However, there are
a couple of things that it does differently. The line:

 User who = (User) object();

extracts the user to whom this mod is attached. The object() method is provided by
the Mod base class, and always returns the object to which the mod is attached. In this
case, it’s always a user, so we can safely cast it.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 23

We create the outgoing message with:

 JSONLiteral response =
 SimpleChat.msgSay(who, from, speech);

Note that we just use the message generator method from SimpleChat — remember
what we said about the possibility of wanting in the future to send the message from
someplace else? Well, here it is.

Instead of sending the message out to the context as a whole, we just send it to the client
of the person to whom it was addressed, and we also echo it to the sender so that they can
see what they did:

 who.send(response);
 if (from != who) {
 from.send(response);
 }

The if statement handles the case where somebody chooses to talk to themselves — hey,
I talk to myself all the time — so that in that case they don’t get the message echoed back
to themselves twice.

Note, by the way, that the value of the to property of the "say" message that is
constructed here is the ref of the user to whom the message was originally addressed,
even when it’s being echoed back to its original sender who is usually somebody else.
Once again, we are distinguishing between the unum to which the message is addressed
(i.e., the logical world object that is the target of the message) and the presences to which
it is actually delivered (in this case, the particular clients that are concerned with it).

Though we didn’t implement push here, the correspondence between a PrivateChat
version of the "push" message handler and its counterpart in the original
SimpleChat class is directly analogous and so we’ll leave adding the push feature as
an exercise for the reader, should you so choose.

Just as the context “ctx-chatroom1” was defined with an entry in the server’s object
repository, each user also is defined by such an entry. We’ll wave our hands for a
moment about how that user’s entry got there in the first place (presumably as part of the
application’s new user registration process), but with this user mod a user’s entry would
look something like this:

{
 type:"user",
 ref:"u-alice",
 name:"Alice",
 mods: [
 { type:"privchat" }

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 24

]
}

Other users would look essentially the same, though of course with their own refs and
names. This pattern is fine as long as all the contexts in this server include the chat
functionality. Chat is generally useful, so it’s certainly conceivable that you might want
to associate the chat mod with every context, but it’s also entirely conceivable that you
might want to have some kinds of non-chat contexts as well. If you do, then having a
privchat mod permanently attached to every user might lead to problems, since the
private chat functionality would always be enabled, even in contexts where it is
inappropriate.

Really what we’d like to do is attach the privchat mod to a user when they arrive in a
chat context and remove it again when they leave, so that it doesn’t get saved as part of
the user’s persistent state. Fortunately, Elko provides a couple of hooks that let us do just
that. Each Context keeps a list of UserWatcher objects that get notified any time a
user enters or exits the context. The SimpleChat mod can register just such a callback
as part of its initialization using the Context class’ registerUserWatcher()
method.

The intuitively natural place for SimpleChat to register a user watcher is in its
constructor, but unfortunately, that won’t work because the mod’s constructor is called
before the mod is attached to the context (since the mod has to exist before it can be
attached!) However, it is not unusual for mods to need to do these kinds of
initializations. The framework provides for this by defining an interface called
ObjectCompletionWatcher.

When the server is constructing a context (or any other unum), it notes any mods that
implement ObjectCompletionWatcher, and once the construction is complete
(meaning everything has been loaded from the repository, and all the mods the context
will have have been constructed and attached), it invokes the objectIsComplete()
method on each of the mods that implements it. The objectIsComplete() method
can perform any additional initializations that require access to the context or to any of
the other attached mods.

Here is how we put these hooks to together to make private chat work the way we want:

First we have the SimpleChat mod class implement the
ObjectCompletionWatcher interface:

public class SimpleChat extends Mod
 implements ObjectCompletionWatcher, ContextMod {

We’ll use the objectIsComplete() method to create and install a UserWatcher:
that will in turn create a PrivateChat mod and attach it to each arriving user:

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 25

public void objectIsComplete() {
 context().registerUserWatcher(
 new UserWatcher() {
 public void noteUserArrival(User who) {
 PrivateChat privateChat =
 new PrivateChat();
 privateChat.attachTo(who);
 }
 public void noteUserDeparture(User who) { }
 });
}

The UserWatcher interface defines two methods, one for when users arrive in the
context and the other for when they leave. We could have used the
noteUserDeparture() method to remove the PrivateChat mod from departing
users, but it is simpler and safer to simply make the PrivateChat mod be ephemeral
by changing its encode() method:

public JSONLiteral encode(EncodeControl control) {
 return null;
}

This mod is never serialized anywhere — remember that, as we said above, returning
null from encode() means “ignore me”. In particular, when a user who has this mod
attached is serialized to the repository, this mod gets left behind. Since there’s now no
serialized form for the PrivateChat mod, you might also want to remove the
@JSONMethod annotation from its constructor.

Beyond Chat

Since this is intended to be a platform for games, lets extend our example application
beyond the primitive chat facility and start adding some more game-like (or, at least,
virtual world-like) features.

As it stands now, the chat room is an all-or-nothing sort of thing: a user is either in a
room or not, but there is no other sense of space, 2-D, 3-D, or otherwise. One of the first
things we’d like to do for many kinds of games is add some kind of spatial abstraction.
There are a couple of different senses of space that are relevant to think about here: the
space formed by different contexts and their relationships to each other, and the space
that is interior to a context. The first of these is the source of much of the power and
scalability of the Elko platform, but involves a host of subtleties that we’re better off
saving for later. The second is much more straightforward and visceral, so we’ll begin
there.

The simplest spatial model is probably a basic two-dimensional Cartesian coordinate
space. We can give every user and item in a context an (X,Y) position, which clients can
then use to control where to display these objects’ visual representations on the screen.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 26

The context server framework provides a very basic positioning mechanism for intra-
context positions of just this sort. The basic unum classes all have a position()
method that returns a position and a setPosition() method that enables you to set it:

public Position position()
public void setPosition(Position pos)

Position itself is a very primitive interface (Positions have to be Encodable,
and that’s about all). This primitiveness means that you can define your own position
class with whatever semantics make sense for your game, without being constrained by
arbitrary framework rules. Unfortunately, this also means that the interface as defined
doesn’t really give you any help in doing this. However, the framework also provides a
couple of basic implementations ready made, the simplest of which is
CartesianPosition, a simple 2-D integer Cartesian coordinate pair that is exactly
what we need for this example.

Now all we need is a way for users to have their avatars walk around. Naturally, we do
this with a mod, something like this:

package com.example.tutorial;

import org.elkoserver.foundation.json.JSONMethod;
import org.elkoserver.foundation.json.MessageHandlerException;
import org.elkoserver.json.EncodeControl;
import org.elkoserver.json.JSONLiteral;
import org.elkoserver.json.Referenceable;
import org.elkoserver.server.context.CartesianPosition;
import org.elkoserver.server.context.Mod;
import org.elkoserver.server.context.Msg;
import org.elkoserver.server.context.User;
import org.elkoserver.server.context.ContextMod;

/**
 * A simple context mod to enable users in a context to move around.
 */
public class Movement extends Mod implements ContextMod {
 @JSONMethod
 public Movement() {
 }

 public JSONLiteral encode(EncodeControl control) {
 if (control.toClient()) {
 return null;
 } else {
 JSONLiteral result =
 new JSONLiteral("movement", control);
 result.finish();
 return result;

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 27

 }
 }

 @JSONMethod({ "x", "y" })
 public void move(User from, int x, int y)
 throws MessageHandlerException
 {
 ensureSameContext(from);
 from.setPosition(new CartesianPosition(x, y));
 context().send(msgMove(who, x, y));
 }

 static JSONLiteral msgMove(Referenceable who, int x, int y) {
 JSONLiteral msg = new JSONLiteral(who, "move");
 msg.addParameter("x", x);
 msg.addParameter("y", y);
 msg.finish();
 return msg;
 }
}

If you’ve been following along at home up to this point, most of this should be relatively
unsurprising. The only really new element is in the move() method where it says:

 from.setPosition(new CartesianPosition(x, y));

but this does pretty much exactly what you’d expect: it generates a new Cartesian
coordinate pair and makes this the user’s new position (behind the scenes, it also ensures
that this changed position will be saved to the repository when the user is checkpointed).

Also, of course, a lot of things have been simplified here for pedagogical purposes: we
don’t really do any kind of parameter checking on the (X,Y) position that the user moves
to. We allow the user to move anywhere they want; all they have to do is assert their
destination. Also, we don’t attempt any kind of path analysis or collision detection, and
we don’t pay any attention at all to the dimension of time — the user moves
instantaneously from their old position to their new one. Most real game designs would
most likely want to introduce additional mechanisms to address one or more of these
complicating elements.

Let’s go ahead and introduce one such complicating element, just to show how it’s done.
Let’s give each context a bounding rectangle: a set of minima and maxima for the (X,Y)
coordinates, beyond which we’ll refuse to let the user go.

You might have noticed an asymmetry in how we implemented the Movement mod: it
was declared as a context mod, meaning that the user’s incoming "move" message,
requesting movement, is addressed to the context, whereas the server’s outgoing
"move" message, announcing the movement to everyone in the context, is addressed to

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 28

the user. The Movement mod could instead have been a user mod, with the request
being addressed to the user — it is the user who is moving, after all. The only thing that
would be different about its implementation in that case would be which interface the
class is declared to implement, UserMod instead of ContextMod. Either choice may
be reasonable, depending on other considerations. In this case we chose to make it a
context mod because we knew what the next step in this tutorial was going to be. We
need someplace to hold the context’s position boundary, and a context mod is the how
we’d do that. But since the only use of the position boundary information is in checking
a movement destination, we’d like the bounds to be readily available to whatever code is
performing that check. We could implement a context mod that holds the bounds and a
user mod that performs the move, with the user mod getting the bounds information by
looking it up from the context (the API supports this), but that’s a lot more work for no
particular benefit in this case. So the Movement mod gets some instance variables, and
revised constructor, encode() and move() methods:

private int myMinX;
private int myMinY;
private int myMaxX;
private int myMaxY;

@JSONMethod({"minx", "miny", "maxx", "maxy"})
public Movement(OptInteger minX, OptInteger minY,
 OptInteger maxX, OptInteger maxY)
{
 myMinX = minX.value(-100);
 myMinY = minY.value(-100);
 myMaxX = maxX.value(100);
 myMaxY = maxY.value(100);
}

public JSONLiteral encode(EncodeControl control) {
 if (control.toClient()) {
 return null;
 } else {
 JSONLiteral result =
 new JSONLiteral("movement", control);
 result.addParameter("minx", myMinX);
 result.addParameter("miny", myMinY);
 result.addParameter("maxx", myMaxX);
 result.addParameter("maxy", myMaxY);
 result.finish();
 return result;
 }
}

@JSONMethod({ "x", "y" })
public void move(User from, int x, int y)
 throws MessageHandlerException

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 29

{
 ensureSameContext(from);
 if (x < myMinX || myMaxX < x || y < myMinY || myMaxY < y) {
 from.send(Msg.msgError(object(), "move",
 "movement out of bounds"));
 } else {
 from.setPosition(new CartesianPosition(x, y));
 context().send(msgMove(from, x, y));
 }
}

Once again, we make the various configuration parameters optional, setting the bounds
values to some reasonable defaults if they are not otherwise specified. Most of the
additions should be obvious, with the possible exception of the updated move() method.

One design question that comes up in a situation like this is: what do you do if a
parameter check fails? Here we chose to respond with an error message so that we could
talk about how we do that, but in general there are a number of different reasonable
options. One would simply be to clamp the movement destination at the boundary.
Another, the one we chose here, would be to reject the request with some kind of error
response. In other cases, it sometimes makes sense to silently reject the request, or even
to disconnect the user, if, for example, the only plausible way invalid parameters could
find their way in would be as the consequence of somebody inappropriately hacking with
their client. Yet another alternative would be to throw a
MessageHandlerException, which will either silently swallow the error or return
an error message, depending on how the server is configured; however, the idea behind a
MessageHandlerException is that something happened that was not merely
wrong, but something that should not have happened. You would not generally use it for
something that should be regarded as a “normal” error — in this case, whether an out of
bounds destination is normal or not is really a design decision on the part of the
developer.

A pattern we like to follow — one that you are not obligated to use, but one that we
provide a little bit of support for — is that a normal error response to a request is
indicated by a reply message with the same target and message verb and a single
parameter named error containing a string explaining the problem. So in this case
we’d send back:

{ to:userRef, op:"move", error:"movement out of bounds" }

This is message is produced by the call to Msg.msgError(). The Msg class is a
utility class that provides a number of different message generator methods for common,
recurring message patterns such as this. Note that, depending on how an error result is
going to be interpreted by the client, this is not always the ideal way to communicate a
problem of this sort, but it’s a simple convention that works well much of the time. You
might not want to use this pattern if there can be multiple requests from the client in
flight at once that could possibly generate errors and the client needs a way to associate

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 30

an error with the particular request that triggered it. In that case you’d want to also
include some kind of message ID or sequence number in both the request and the
response. Also, as a rule, the string in the error parameter is intended to be used for
debugging, not for display to the human at the controls. Providing meaningful user
feedback might warrant the inclusion of additional diagnostic parameters in the response
beyond a simple indicator of which flavor of problem occurred.

Now that we have the ability for our users to move around inside the space defined by the
context, let’s give them something they can do there. If there’s an item in the context (on
the ground, so to speak), we’d like a user to be able to handle it: to walk over to it, pick it
up, carry it someplace else, and then put it down again. A simple, portable item like this
is basically an inert prop, but it can act as a bit of set dressing for role playing, and it can
be the foundation for more complex types of objects that enable more complicated game
play as the implementation evolves.

Lacking any more sophisticated behavior, all these prop items are essentially alike.
However, we can label each of them with a tag that says what sort of object it represents,
so that the client could distinguish between them, for example by displaying a different
graphic for each kind. As with many of the examples in this tutorial, the presentation of
an object on the client can be made arbitrarily sophisticated and configurable by the
addition of other types of descriptive information. Once again, we’ll leave that as an
exercise for the reader, but hopefully the generalization from the simple example given
here will be reasonably obvious.

So here is the Prop mod, the most sophisticated example yet (but still only about 70
lines of code even counting whitespace and the Java boilerplate):

package com.example.tutorial;

import org.elkoserver.foundation.json.JSONMethod;
import org.elkoserver.foundation.json.MessageHandlerException;
import org.elkoserver.json.EncodeControl;
import org.elkoserver.json.JSONLiteral;
import org.elkoserver.server.context.CartesianPosition;
import org.elkoserver.server.context.Item;
import org.elkoserver.server.context.ItemMod;
import org.elkoserver.server.context.Mod;
import org.elkoserver.server.context.Msg;
import org.elkoserver.server.context.User;

public class Prop extends Mod implements ItemMod {
 private String myKind;

 private static final int GRAB_DISTANCE = 5;

 public Prop(String kind) {
 myKind = kind;

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 31

 }

 public JSONLiteral encode(EncodeControl control) {
 JSONLiteral result = new JSONLiteral("prop", control);
 result.addParameter("kind", myKind);
 result.finish();
 return result;
 }

 @JSONMethod
 public void grab(User from) throws MessageHandlerException {
 ensureInContext(from);
 Item item = (Item) object();
 if (!item.isPortable()) {
 throw new MessageHandlerException(
 "attempt to grab non-portable item " + item);
 }

 CartesianPosition itemPos =
 (CartesianPosition) object().position();
 CartesianPosition userPos =
 (CartesianPosition) from.position();
 int dx = itemPos.x() - userPos.x();
 int dy = itemPos.y() - userPos.y();
 if (dx*dx + dy*dy > GRAB_DISTANCE*GRAB_DISTANCE) {
 throw new MessageHandlerException(
 "attempt to grab too far away item " + item);
 }

 item.setContainer(from);
 item.setPosition(null);
 context().sendToNeighbors(from, Msg.msgDelete(item));
 from.send(Movement.msgMove(item, 0, 0, from));
 }

 @JSONMethod
 public void drop(User from) throws MessageHandlerException {
 ensureHolding(from);
 Item item = (Item) object();
 if (!item.isPortable()) {
 throw new MessageHandlerException(
 "attempt to drop non-portable item " + item);
 }
 CartesianPosition pos =
 (CartesianPosition) from.position();
 item.setPosition(pos);
 item.setContainer(context());
 item.sendObjectDescription(context().neighbors(from),

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 32

 context());
 from.send(Movement.msgMove(item, pos.x(), pos.y(),
 context()));
 }
}

This is an item mod. The only piece of state is the kind string, which allows the client
to tell one species of prop from another. Hopefully by now, the state declaration,
serialization, and deserialization should look completely routine to you. All the
interesting stuff is in the two message handler methods grab() and drop(), which
enable users to pick things up and put them back down.

Let’s look at grab() first:

@JSONMethod
public void grab(User from) throws MessageHandlerException {

The "grab" message says, basically “grab this”. It indicates a desire on the behalf of
the sending user to pick up the item to which this mod is attached. To begin with, we do a
number of checks to see if the operation is going to be allowed. First, make sure we are
actually in the same context with the item (this check is extremely common, which is
why we provide its implementation for you).

 ensureInContext(from);

Next, we want to be sure the item is something that affords being picked up. All items
have a portability property that indicates whether or not they can be moved around.
Since the whole point of the Prop mod is to provide such manipulative functions, we
might consider that any item with the Prop mod attached is portable by definition, but
we’d like to leave the option open for the future for Props to have other things that can
be done to them even if they are stationary, so we’ll go ahead with the portability check:

 Item item = (Item) object();
 if (!item.isPortable()) {
 throw new MessageHandlerException(
 "attempt to grab non-portable item " + item);
 }

As was mentioned earlier, the object() method is provided by the Mod base class, and
always returns the unum to which the mod is attached. In this case, the unum is always
an Item, so once again we are safe casting it. Then we use the Item class’ built-in
isPortable() function to check for portability, and fail if the check fails. Note that
we go ahead and use the MessageHandlerException here because we expect the
client to preflight this operation and not even attempt it on non-portable items — the
game UI will be better anyway if grabbing is simply not available on ungrabbable
objects, rather than inflicting an error message on the user.

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 33

Next we check to see if the item is close enough to where the user is. Here we do a
simple Pythagorean theorem distance check based on a fixed reachability distance. A
more complex example might parameterize the distance in a more sophisticated way.

 CartesianPosition itemPos =
 (CartesianPosition) object().position();
 CartesianPosition userPos =
 (CartesianPosition) from.position();
 int dx = itemPos.x() - userPos.x();
 int dy = itemPos.y() - userPos.y();
 if (dx*dx + dy*dy > GRAB_DISTANCE*GRAB_DISTANCE) {
 throw new MessageHandlerException(
 "attempt to grab too far away item " + item);
 }

Once all the checks have been passed, it’s time to actually move the item. This has two
parts: changing the item’s container from the context to the user, and removing its
position. (The latter is not strictly necessary, but is more a bit of data hygiene. This way,
when the item is inside the user, it isn’t carrying bogus position information with some
arbitrary coordinate it inherited from when it was on the ground. Note also that other
kinds of containers might actually have internal geometry of their own, and position
might have some entirely different meaning there. We’re not bothering with that in this
example though.)

 item.setContainer(from);
 item.setPosition(null);

Finally, we need to tell everybody in the context what happened. This also has two parts:
informing the user who made the request and informing everybody else. The reason for
these two different notifications is that the different users will see different things. From
the point of view of the user who issued the grab request, the item was moved from the
ground (the context) into the user’s inventory (the user as container). From everybody
else’s point of view, the item has disappeared (once again, this is a design decision: we
can allow a container to be transparent — contents visible to everyone — but in this case
we have chosen to make a user’s inventory private).

First, we tell the requesting user:

 from.send(Movement.msgMove(item, 0, 0, from));

Here, we have extended the meaning and syntax of the "move" message: in addition to
the X and Y position parameters, we now also allow an optional container specifier. The
extended meaning is “move this object to position (X,Y) in the given container”. If the
container is left unspecified, it is assumed that the container is unchanged, i.e., that the
object is just moved around within its current container.

Telling everybody else is a little more subtle:

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 34

 context().sendToNeighbors(from, Msg.msgDelete(item));

The Msg.msgDelete() method produces a "delete" message, another one of the
common messages that is used repeatedly in the Elko framework. The
sendToNeighbors() method is provided by the context, and the pattern may be new
to you but we use it a lot. The idea is: send this message to every user in the context
except for one specific user who will be excluded. In other words, send this message to
all the neighbor users of a given user.

And then we’re all done!

The drop() method has some similar features, but a few wrinkles of its own:

@JSONMethod
public void drop(User from) throws MessageHandlerException {

As before, we begin by doing some checks. The first check is that the user who is asking
to drop the item is actually in possession of it in the first place:

 ensureHolding(from);

The ensureHolding() method is another one of the guard methods provided by the
Mod base class. It throws an exception if the object to which the mod is attached is not in
the containership hierarchy of the user indicated in the parameter.

Next, we once again check to be sure that the item is portable:

 Item item = (Item) object();
 if (!item.isPortable()) {
 throw new MessageHandlerException(
 "attempt to drop non-portable item " + item);
 }

Note that it is possible for a user to be carrying around a non-portable item. Non-
portability simply means is that the item’s location can’t be changed, but that
unchangeable position might be inside the user’s inventory. This might be used, for
example, for some kind of tool that the user should always have access to.

Next, we set the item’s position and container. This looks a lot like grab(), except that
we copy the user’s position (we’re dropping the item on the ground at the spot where the
user is currently located), and, of course, the new container is the context:

 CartesianPosition pos = (CartesianPosition) from.position();
 item.setPosition(pos);
 item.setContainer(context());

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 35

Finally, we have the same kind of two-part notification. This is the dual to what
happened with grab(): from the requesting user’s point of view, the item is being
moved from their inventory to the ground; from everybody else’s point of view, the item
is coming into existence for the first time:

First, we tell the requesting user:

 from.send(Movement.msgMove(item, pos.x(), pos.y(),
 context()));

this looks pretty much just like it did in grab(), except the movement is in the other
direction.

Telling everybody else introduces some more new ideas:

 item.sendObjectDescription(context().neighbors(from),
 context());

The Item class’ sendObjectDescription() method generates and sends a
"make" message for the item. The two parameters are (1) who to deliver the message to,
and (2) what container the item should be created into (this is the unum to which the
"make" message is targeted). This is different from an ordinary message send operation
because the act of sending an item description is a bit more complicated: not only do we
need to generate and send a "make" message to create the item itself but we may also
need additional "make" messages for the rest of item’s contents (and their contents, and
so on) if the item is a container whose contents are visible (what we above called a
transparent container).

The first parameter to sendObjectDescription() needs to be something that
implements the Deliverer interface. This interface is defined as:

public interface Deliverer {
 void send(JSONLiteral message);
}

Its send() method delivers a message somewhere. You’ve seen this already: the User
class implements Deliverer: it delivers the message to the client associated with the
user. The Context class also implements Deliverer: it delivers the message to all
the clients of all the users in the context. We’ve used these kinds of send() operations
already, though you didn’t associate them with this interface at the time. The expression:

context().neighbors(from)

returns a Deliverer that delivers to all of the neighbors of the user from in the
context. It is similar to the sendToNeighbors() operation discussed above (in fact,
it is implemented internally using the sendToNeighbors() method), but is packaged
in a way that allows it to be reused for multiple messages, since, as we mentioned,

Elko Tutorial 1-Feburary-2016

©2016 Elkoserver.org. 36

sendObjectDescription() can result in more than one message being generated
and sent.

There are lots more bells and whistles in the various classes that the framework provides,
but you should now have a grasp of the basics. Explore the Javadoc for the various
server classes, especially the ones in the package
org.elkoserver.server.context, to get a sense of all the different things you
can do. And go build something fun!

